Vier-Farben-Satz
Der
Vier-Farben-Satz (früher auch als
Vier-Farben-Vermutung oder
Vier-Farben-Problem bekannt) der
Graphentheorie,
Topologie bzw. Kartografie besagt, dass vier Farben immer ausreichen, um eine beliebige Landkarte so einzufärben, dass keine zwei angrenzenden Länder die gleiche Farbe bekommen.
Dies gilt unter den Einschränkungen, dass ein gemeinsamer
Punkt nicht als „Grenze“ zählt und jedes Land aus einer zusammenhängenden Fläche besteht, also keine Exklaven vorhanden sind.
Beispiel einer Vier-Färbung
Geschichte
Der Satz wurde erstmals 1852 von Francis Guthrie als Vermutung aufgestellt, als er die Counties von England färben wollte. Es war offensichtlich, dass drei Farben nicht ausreichten und man fünf in keinem konstruierten Beispiel brauchte. In einem Brief des Londoner Mathematikprofessors Augustus De Morgan vom 23. Oktober 1852 an den irischen Kollegen William Rowan Hamilton wurde die Vermutung erstmals diskutiert und veröffentlicht: „Genügen vier oder weniger Farben um die Länder einer Karte so zu färben, dass benachbarte Länder verschiedene Farben tragen?“.
Der englische Mathematiker Arthur Cayley stellte das Problem 1878 der mathematischen Gesellschaft Londons vor. Innerhalb nur eines Jahres fand Alfred Kempe einen Beweis für den Satz. Elf Jahre später, 1890, zeigte Percy Heawood, dass Kempes Beweis fehlerhaft war. Ein zweiter fehlerhafter Beweis, 1880 von Peter Guthrie Tait veröffentlicht, konnte ebenfalls elf Jahre lang nicht widerlegt werden. Erst 1891 zeigte Julius Petersen, dass auch Taits Beweis nicht korrekt war. Heawood gab im Jahre 1890 mit der Widerlegung von Kempes „Vier-Farben-Beweis“, zusätzlich einen Beweis für den Fünf-Farben-Satz an, womit eine obere Grenze für die Färbung von
planaren Graphen zum ersten Mal fehlerfrei bewiesen wurde. In Kempes fehlerhaften ersten Beweis steckten bereits grundlegende Ideen, die zum späteren Beweis durch Appel und Haken führten.
Heinrich Heesch entwickelte in den 1960er und 1970er Jahren Verfahren, um einen Beweis mit Hilfe des Computers zu suchen.
Darauf aufbauend konnten Ken Appel und Wolfgang Haken 1977 einen solchen finden. Der Beweis reduzierte die Anzahl der problematischen Fälle von
Unendlich auf 1.936 (eine spätere Version sogar 1.476), die durch einen Computer einzeln geprüft wurden.
1996 konnten Neil Robertson, Daniel Sanders, Paul Seymour und Robin Thomas einen modifizierten Beweis finden, der die Fälle auf 633 reduzierte. Auch diese mussten per Computer geprüft werden.
2004 haben Benjamin Werner und Georges Gonthier einen formalen Beweis des Satzes in dem Beweisassistenten Coq konstruiert. Dadurch ist es nicht mehr nötig, den Computerprogrammen zur Überprüfung der Einzelfälle zu vertrauen, sondern „nur“ dem Coq-System.
Der Vier-Farben-Satz war das erste große mathematische Problem, das mit Hilfe von Computern gelöst wurde. Deshalb wurde der Beweis von einigen Mathematikern nicht anerkannt, da er nicht direkt durch einen Menschen nachvollzogen werden kann. Schließlich muss man sich auf die Korrektheit des Compilers und der Hardware verlassen. Auch die mathematische Eleganz des Beweises wurde kritisiert („Ein guter Beweis liest sich wie ein Gedicht - dieser sieht aus wie ein Telefonbuch!“).
Falsche Gegenbeweise
Diese Karte wurde mit fünf Farben eingefärbt...
Wie viele offene Probleme der
Mathematik hat der
Vier-Farben-Satz eine
Menge falsche Beweise und Gegenbeweise provoziert. Manche haben der öffentlichen Prüfung über Jahrzehnte standgehalten, bis sie als falsch erkannt wurden. Viele andere, hauptsächliche von Amateuren entwickelte, sind niemals veröffentlicht worden.
Häufig enthalten die einfachsten „Gegenbeispiele“ eine Region welche alle anderen Regionen berührt. Dies erzwingt, um mit vier Farben auszukommen, die restlichen Regionen mit nur drei Farben auszufüllen. Da der Vier-Farben-Satz gilt, ist dies immer möglich. Die Person, die die Karte entwickelt, konzentriert sich aber häufig auf diese große Region und übersieht dabei schnell, dass es tatsächlich möglich ist.
... und es ist notwendig, mindestens vier der zehn Regionen umzufärben, um eine Färbung mit nur vier Farben zu erreichen.
Dieser Trick kann verallgemeinert werden: es ist leicht Karten zu konstruieren, auf denen es unmöglich ist, mit vier Farben auszukommen, wenn die Farben einiger Regionen im Voraus festgelegt wurden. Ein oberflächlicher Überprüfer des Gegenbeispiels wird oft nicht daran denken, diese Regionen umzufärben, so dass das Gegenbeispiel gültig wirkt.
Andere falsche Gegenbeweise verletzen die Annahmen des Satzes in unerwarteter Weise, wie zum Beispiel durch Verwendung von Regionen, die aus mehreren, getrennten Bereichen bestehen, oder durch Verbieten von gleichfarbigen Regionen, die sich nur an einem
Punkt berühren.
Formalisierung
Formal lässt sich das Problem am einfachsten mit Hilfe der
Graphentheorie beschreiben. Man fragt, ob die
Knoten jedes
planaren Graphen mit maximal vier Farben so gefärbt werden können, dass keine benachbarten
Knoten die gleiche Farbe tragen. Oder kürzer: „Ist jeder
planare Graph 4-färbbar?“ Dabei wird jedem Land der Karte genau ein
Knoten zugewiesen und zwei
Knoten, deren Länder angrenzen, verbunden.
Das Vier-Farben-Problem ist ein Spezialfall der Heawood-Vermutung. Das klassische Vier-Farben-Problem betrifft Landkarten, die auf einer
Ebene oder Kugeloberfläche liegen. Die Heawood-Vermutung stellt das analoge Problem für allgemeine Oberflächen, etwa die Kleinsche Flasche (6 Farben), das Möbiusband (6 Farben), die
Projektive Ebene (6 Farben) und den Torus (7 Farben). Interessanterweise ist die Verallgemeinerung – abgesehen vom Spezialfall für Ebenen oder Kugeloberflächen – wesentlich leichter zu beweisen als der
Vier-Farben-Satz und kommt ohne Computerhilfe aus. J. W. Ted Youngs und Gerhard Ringel konnten im Jahre 1968 erstmal die Heawood-Vermutung für alle anderen Fälle beweisen (Satz von Ringel-Youngs). Der
Vier-Farben-Satz wird also nicht durch diesen Beweis verifiziert, sondern muss gesondert behandelt werden.
Bemerkung
Wenn (so wie in der Realität häufig der Fall) ein Land auf mehrere nicht-angrenzende Gebiete verteilt ist (Kolonien, Enklaven, Exklaven, ...), dann ist der zugehörige Graph nicht notwendigerweise planar und es sind möglicherweise mehr als vier Farben zur Färbung notwendig.
Literatur
- Neil Robertson, Daniel P. Sanders, Paul Seymour, Robin Thomas: A new proof of the four-colour theorem. In: Electronic Research Announcements of the American Mathematical Society. 2/1996. S. 17–25
- Kenneth Appel, Wolfgang Haken: Every Planar Map is Four Colorable. In: Contemp. Math. vol. 98, Amer. Math. Soc., Providence, RI, 1989
- George Spencer-Brown: Laws of Form. Appendix 5. Two proofs of the four-colour map theorem.
- Georges Gonthier: A computer-checked proof of the Four Colour Theorem. unveröffentlicht
Es gibt keinen Königsweg zur Mathematik.
Euklid
Anbieterkеnnzeichnung: Mathеpеdιa von Тhοmas Stеιnfеld
• Dοrfplatz 25 • 17237 Blankеnsее
• Tel.: 01734332309 (Vodafone/D2) •
Email: cο@maτhepedιa.dе