Kürzen von Brüchen
Sind
a,b,c ganze Zahlen,
b,c=/0, dann gilt
b⋅ca⋅c=ba
Liest man diese Gleichung von links nach rechts, dann wird der
Bruch (ac)/(bc) mit
c gekürzt, liest man sie von rechts nach links, dann wird der
Bruch a/b mit
c erweitert.
Beispiele:
86=4⋅23⋅2=43
8800200=44⋅2001⋅200=441
Die Beispiele zeigen, dass sich durch das
Kürzen meist erhebliche Vereinfachungen ergeben, was insbesondere das eventuelle Weiterrechnen mit den
Brüchen deutlich erleichtert.
Merksprüche
- Faktoren kürzen, das ist brav; wer Summen kürzt, der ist ein Schaf.
- Differenzen und Summen kürzen nur die Dummen.
Nach unserer bisherigen Erfahrung sind wir zum Vertrauen berechtigt, dass die Natur die Realisierung des mathematisch denkbar Einfachsten ist.
Albert Einstein
Anbieterkеnnzeichnung: Mathеpеdιa von Тhοmas Stеιnfеld
• Dοrfplatz 25 • 17237 Blankеnsее
• Tel.: 01734332309 (Vodafone/D2) •
Email: cο@maτhepedιa.dе