Zahlentheorie

Ursprünglich ist die Zahlentheorie (auch: Arithmetik) ein Teilgebiet der Mathematik, welches sich allgemein mit den Eigenschaften der ganzen Zahlen und insbesondere mit den Lösungen von Gleichungen in den ganzen Zahlen (Diophantische Gleichung) beschäftigt. Aus moderner Sicht umfasst sie alle mathematischen Theorien, die sich historisch aus diesen Fragestellungen entwickelt haben.

 
 

Teilgebiete

Die verschiedenen Teilgebiete der Zahlentheorie werden gemeinhin nach den Methoden unterschieden, nach denen zahlentheoretische Fragestellungen bearbeitet werden.

Elementare Zahlentheorie

Von der Antike bis in das siebzehnte Jahrhundert behauptete sich die Zahlentheorie als eigenständige Disziplin und kam ohne andere mathematische Teilgebiete aus. Ihre einzigen Hilfsmittel waren die Eigenschaften der ganzen Zahlen, insbesondere Primfaktorzerlegung (Fundamentalsatz der Arithmetik), Teilbarkeit und das Rechnen mit Kongruenzen. Eine solche reine Herangehensweise wird auch als elementare Zahlentheorie bezeichnet. Wichtige Resultate, die sich mit Hilfe elementarer Methoden erzielen lassen, sind der kleine Satz von Fermat und dessen Verallgemeinerung, der Satz von Euler (Satz 164S), der Chinesische Restsatz, der Satz von Wilson und der Euklidische Algorithmus.

Analytische Zahlentheorie

Als erster bemerkte Euler, dass man Methoden der Analysis und Funktionentheorie benutzen konnte, um zahlentheoretische Fragestellungen zu lösen. Eine solche Herangehensweise bezeichnet man als analytische Zahlentheorie. Wichtige Probleme, die mit analytischen Methoden gelöst wurden, betreffen meist statistische Fragen nach der Verteilung von Primzahlen und der Asymptotik, wie zum Beispiel der Primzahlsatz von Gauß und der dirichletsche Satz über Primzahlen in arithmetischen Progressionen. Daneben dienten analytische Methoden auch dazu, die Transzendenz von Zahlen wie der Kreiszahl \(\displaystyle \pi\) oder der eulerschen Zahl \(\displaystyle \e\) nachzuweisen. Im Zusammenhang mit dem Primzahlsatz tauchten auch die Zeta-Funktionen zuerst auf, die heute Gegenstand sowohl analytischer als auch algebraischer Forschung sind. Die wohl berühmteste Zeta-Funktion ist die riemannsche Zeta-Funktion, Ausgangspunkt der riemannschen Vermutung.

Algebraische Zahlentheorie und arithmetische Geometrie

Einen der großen Meilensteine der Zahlentheorie bildete die Entdeckung des quadratischen Reziprozitätsgesetzes. Es zeigte, dass man Fragen der Lösbarkeit diophantischer Gleichungen in den ganzen Zahlen durch den Übergang zu anderen Zahlbereichen einfacher lösen kann (quadratische Zahlkörper, gaußsche Zahlen). Hierzu betrachtet man endliche Erweiterungen der rationalen Zahlen, sogenannte algebraische Zahlkörper (woher auch der Name algebraische Zahlentheorie entstammt). Elemente von Zahlkörpern sind Nullstellen von Polynomen mit rationalen Koeffizienten. Diese Zahlkörper enthalten den ganzen Zahlen analoge Teilmengen, die Ganzheitsringe. Sie verhalten sich in vieler Hinsicht wie der Ring der ganzen Zahlen. Die eindeutige Zerlegung in Primzahlen gilt allerdings nur noch in wenigen Zahlkörpern der Klassenzahl 1. Allerdings sind Ganzheitsringe Dedekindringe und jedes gebrochene Ideal besitzt daher eine eindeutige Zerlegung in Primideale. Die Analyse dieser algebraischen Zahlkörper ist sehr kompliziert und erfordert Methoden nahezu aller Teilgebiete der reinen Mathematik, insbesondere der Algebra, Topologie, Analysis, Funktionentheorie (insbesondere der Theorie der Modulformen), Geometrie und Darstellungstheorie. Die algebraische Zahlentheorie beschäftigt sich weiterhin mit dem Studium algebraischer Funktionenkörper über endlichen Körpern, deren Theorie weitgehend analog zur Theorie der Zahlkörper verläuft. Algebraische Zahl- und Funktionenkörper werden unter dem Namen »globale Körper« zusammengefasst. Oftmals stellt es sich als fruchtbar heraus, Fragen »lokal«, d.h. für jede Primzahl \(\displaystyle p\) einzeln zu betrachten. Dieser Vorgang führt im Fall der ganzen Zahlen zu den p-adischen Zahlen, allgemein zu lokalen Körpern.

Für die Formulierung der modernen algebraischen Zahlentheorie ist die Sprache der homologischen Algebra und insbesondere die ursprünglich topologischen Konzepte der Kohomologie, Homotopie und der abgeleiteten Funktoren unerlässlich. Höhepunkte der algebraischen Zahlentheorie sind die Klassenkörpertheorie und die Iwasawa-Theorie.

Nach der Neuformulierung der algebraischen Geometrie durch Grothendieck und insbesondere nach Einführung der Schemata stellte es sich (in der zweiten Hälfte des zwanzigsten Jahrhunderts) heraus, dass die Zahlentheorie als ein Spezialfall der algebraischen Geometrie betrachtet werden kann. Die moderne algebraische Zahlentheorie wird daher auch als geometrische Zahlentheorie oder arithmetische Geometrie bezeichnet, in der der Begriff des Schemas eine zentrale Rolle spielt.

Zu jedem Zahlkörper gehört eine Zeta-Funktion, deren analytisches Verhalten die Arithmetik des Zahlkörpers widerspiegelt. Auch für die Dedekindschen Zeta-Funktionen ist die riemannsche Vermutung im Allgemeinen unbewiesen. Für endliche Körper ist ihre Aussage in den berühmten Weil-Vermutungen enthalten und wurde von Pierre Deligne mit Mitteln der algebraischen Geometrie gelöst, wofür er 1978 die Fields-Medaille bekam.

Algorithmische Zahlentheorie

Die algorithmische Zahlentheorie ist ein Zweig der Zahlentheorie, der mit dem Aufkommen von Computern auf breites Interesse stieß. Dieser Zweig der Zahlentheorie beschäftigt sich damit, wie zahlentheoretische Probleme algorithmisch effizient umgesetzt werden können. Wichtige Fragestellungen sind, ob eine große Zahl prim ist, die Faktorisierung großer Zahlen und der eng damit verbundenen Frage nach einer effizienten Berechnung des diskreten Logarithmus. Außerdem gibt es inzwischen Algorithmen zur Berechnung von Klassenzahlen, Kohomologiegruppen und der K-Theorie algebraischer Zahlkörper.

Anwendungen der Zahlentheorie

Anwendungen der Zahlentheorie finden sich in der Kryptographie, insbesondere bei der Frage nach der Sicherheit der Datenübertragung im Internet. Hierbei finden sowohl elementare Methoden der Zahlentheorie (Primfaktorzerlegung, etwa bei RSA oder ElGamal), als auch fortgeschrittene Methoden der algebraischen Zahlentheorie, wie etwa die Verschlüsselung über elliptische Kurven (ECC) breite Anwendung.

Ein weiteres Anwendungsgebiet ist die Codierungstheorie, die sich in ihrer modernen Form auf die Theorie der algebraischen Funktionenkörper stützt.

Ich glaube, daß es, im strengsten Verstand, für den Menschen nur eine einzige Wissenschaft gibt, und diese ist reine Mathematik. Hierzu bedürfen wir nichts weiter als unseren Geist.

Georg Christoph Lichtenberg

Copyright- und Lizenzinformationen: Diese Seite basiert dem Artikel Zahlentheorie aus der frеiеn Enzyklοpädιe Wιkιpеdιa und stеht unter der Dοppellizеnz GNU-Lιzenz für freie Dokumentation und Crеative Commons CC-BY-SA 3.0 Unportеd (Kurzfassung). In der Wιkιpеdιa ist eine Listе dеr Autorеn des Originalartikels verfügbar. Da der Artikel geändert wurde, reicht die Angabe dieser Liste für eine lizenzkonforme Weiternutzung nicht aus!
Anbieterkеnnzeichnung: Wurzelzieher Mathеpеdιa  •  Тhοmas Stеιnfеld  • Dοrfplatz 25  •  17237 Blankеnsее  • Tel.: 01734332309 (Vodafone/D2)  •  Email: cο@maτhepedιa.dе
 
G: 14.10.2016 17:41:10 (356 ms; 324 M)

Inhalt