Koordinatensysteme

Ein Koordinatensystem dient der Positionsangabe von Punkten im Raum.

Die Position im Raum wird im gewählten Koordinatensystem durch Angabe von Zahlenwerten, den Koordinaten, eindeutig bestimmt. Mittels einzelner Punkte lassen sich dann durch mehrere Punkte bestimmte Objekte (Linien, Kurven, Abstände, Flächen, Körper) angeben.

Die Anzahl der zur Beschreibung notwendigen Werte entspricht der Dimension des Raumes (oft als \(\displaystyle n\) abgekürzt). Man fasst die Koordinaten eines \(\displaystyle n\)-dimensionalen Raumes dann auch als ein \(\displaystyle n\)-Tupel von Koordinaten auf.

Der Nullpunkt, bei dem alle Koordinaten den Wert 0 annehmen, nennt man den Koordinatenursprung.

Das am häufigsten verwendete Koordinatensystem ist das Kartesische Koordinatensystem.

 
 

Unterschiedliche Koordinatensysteme

Die Positionen desselben Punktes im Raum können in verschiedenen Koordinatensystemen dargestellt werden. In den unterschiedlichen Darstellungen wird diese durch unterschiedliche Koordinaten repräsentiert. Bei Systemen, die eine Symmetrie aufweisen kann man durch Darstellung in einem geeigneten Koordinatensystem erreichen, dass einzelne Koordinaten konstant bleiben. Z.B. genügt zur Festlegung einer Position auf der Erdoberfläche, wenn es auf die Höhe über Normalnull (genauer: Ortsabhängigkeit des Erdradius) nicht ankommt, die Angabe von lediglich zwei Koordinaten (wie Längengrad und Breitengrad), die dritte Koordinate ist durch den Erdradius festgelegt. Während sich in solchen Fällen die Verwendung sphärischer Polarkoordinaten (Kugelkoordinaten) anbietet, erfolgt die Beschreibung von Punkten auf einer Ebene im Raum hingegen einfacher in kartesischen Koordinaten: zwei Koordinaten sind variabel, die dritte ist (ohne Beschränkung der Allgemeinheit) durch den konstanten Abstand der Ebene vom Koordinatenursprung festgelegt.

Arten von Koordinatensystemen, jeweils mit dem Punkt P(3;2). a) geradlinige b) geradlinige orthogonale c) krummlinige orthogonale d) krummlinige

Arten von Koordinatensystemen, jeweils mit dem Punkt P(3;2). a) geradlinige b) geradlinige orthogonale c) krummlinige orthogonale d) krummlinige

Im Allgemeinen unterscheidet man zwischen geradlinigen (affinen) und krummlinigen Koordinatensystemen. Wenn außerdem Koordinatenlinien in jedem Punkt senkrecht aufeinander stehen, nennt man solche Koordinatensysteme orthogonal.

Beispiele:

  • geradlinige Koordinatensysteme:
  • geradlinige orthogonale Koordinatensysteme:
  • krummlinige Koordinatensysteme:
  • krummlinige orthogonale Koordinatensysteme:
:räumliche und sphärische Polarkoordinaten (Kugelkoordinaten)
:Toruskoordinaten

Transformationen zwischen Koordinatensystemen

Die Transformation zwischen unterschiedlichen Koordinatensystemen erfolgt durch Koordinatentransformation. Die unterschiedlichen Zahlenwerte der \(\displaystyle n\)-Tupel beschreiben dieselbe Position im Raum. Beim Übergang von geradlinigen (affinen) Koordinaten zu krummlinigen Koordinaten ist zur Berechnung von Größen wie Volumen die Funktionaldeterminante (Jacobi-Determinante) anzuwenden.

Die ganzen Zahlen hat der liebe Gott geschaffen, alles andere ist Menschenwerk.

Leopold Kronecker

Copyright- und Lizenzinformationen: Diese Seite basiert dem Artikel Koordinatensystem aus der frеiеn Enzyklοpädιe Wιkιpеdιa und stеht unter der Dοppellizеnz GNU-Lιzenz für freie Dokumentation und Crеative Commons CC-BY-SA 3.0 Unportеd (Kurzfassung). In der Wιkιpеdιa ist eine Listе dеr Autorеn des Originalartikels verfügbar. Da der Artikel geändert wurde, reicht die Angabe dieser Liste für eine lizenzkonforme Weiternutzung nicht aus!
Anbieterkеnnzeichnung: Wurzelzieher Mathеpеdιa  •  Тhοmas Stеιnfеld  • Dοrfplatz 25  •  17237 Blankеnsее  • Tel.: 01734332309 (Vodafone/D2)  •  Email: cο@maτhepedιa.dе
 
G: 14.10.2016 12:48:12 (549 ms; 325 M)

Geometrie